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Abstract— FDG-PET images of patients suffering from
Alzheimers disease (AD) were obtained from Paul Scherre
Institute, Villingen, Switzerland. The data were from a
CTI/Siemens ECAT 933/04-16 scanner, comprising of 7
image slices 128 x 128 pixels. The study included 48 Clin-
ically diagnosed AD patients and 73 normal controls. Us-
ing an invariant feature extraction method features were
extracted. The features are invariant to translation and
rotation of object(s) within the image. The patients are
separated into two groups one for training (24 AD and 37
normal controls) and one cross validation testing (24 AD
and 36 normal controls). Discriminant function analysis
yielded a classification accuracy of 88% sensitivity and 86%
specificity, when these features were used.
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I. INTRODUCTION

N this paper we utilise the method for constructing

invariant features for gray scale images proposed by
Schulz-Mirbach [4]. The method produces features in-
variant to rotation and translation, but not invariant to
scaling, thus its use is limited. Essentials concerning the
action of transformation groups on gray scale images and
the basic concepts for calculating invariant gray scale fea-
tures by evaluating necessary integrals over the image will
be introduced.

II. THEORY OF INVARIANT GRAY SCALE FEATURES

Let M be a gray scale image, where M|z, y] is the gray
value at pixel coordinates (x,y). In order to formulate the
theory both continuous and discrete cases are considered.
In the discrete case the pixel coordinates (z,y) are integers
in the range 0 < # < N,, 0 <y < N, where N, and N,
are the dimensions of the image. In the continuous case
the pixel coordinates can be real numbers.

Rotation and translation will be described by the action
of the transformation group G with elements g € G on the
images. So for an image M and a group element g € G
the transformed image is denoted by gM [7]. So for an
image translated by t = (¢,t,)7 € R and rotated by angle
¢ € [0, 27] there exists

(gM)[z,y] = M[z,y] = M[k, ] with

(k)_(cosqb —sin¢)<x)+(tz> (1)
I ) \ sing cos¢ Yy ty

All indices are modulo N. Due to the periodic boundary
conditions the range of the components of the translation
vector t is restricted to 0 < t, < N,, 0 < t, < N, which is
the size of the image. In the discrete formulation pixel co-
ordinates are restricted to integers. Since vector (k,l)T in

equation 1 is likely to have non integer values, appropriate
rounding or interpolation is necessary.

An invariant image feature is a function F'(M) which is
invariant to the action of the transformation group on the
images i.e

F(gM)=FM) Vgeg. 2)

So feature F' will remain constant even if image M is
transformed by g.

The transformation law (1) states that “an image trans-
formation consists of a rotation around the rotation centre
followed by translation. This rotation centre is not known
a priori and it does not necessarily fall inside the image.
However, by applying an appropriate translation it is pos-
sible to bring the coordinate origin to the rotation centre.
Since we are seeking features which are invariant both to
rotation and translation the position of the rotation centre
does not matter.” [6]

A. Constructing invariant features

According to Schulz-Mirbach [4], [7] it is possible to
construct an invariant feature F'(M) by integrating f(gM)
over the transformation group G:

F(M) = A[f](M) = /G f(gM)dg 3)

where A[f] is called the average of f. This averaging
technique is described in greater detail in [5]. Since we are
considering the group of image rotations and translations
with cyclic boundary conditions, the integration over the
transformation group can be written as

4 1 Ny N 27
00 = 5 [ omdsaa
(4)

Therefore if the function f(M) is already invariant i.e.
f(M) = f(gM) it remains unaltered by the group aver-
aging. So A[f|(M) = f(M).

Equation 4 can be implemented by a two step strategy
where in the first step f is calculated for each pixel, and
in the second step the integral of all these results is com-
puted. In the discrete domain it is simply the sum of all
the results obtained by evaluating f. Figure 1 describes
this process schematically.

If we consider the monomial example f(M) = MIJ0, 0],
we can deduce MJ0,0] = M]t,, t,] from equation 1. Then
the group average, which is the feature, is given by

N, N,
ALV l/t M, t,)dt,dt,  (5)

= N2
NZ Ji,=0 Jt,=0

In this case the result is simply the average gray value
of the image.
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Fig. 1. Calculating invariant features

If we consider the monomial example f(M) =
MJ[0,0]M][5,0], again we can deduce M][0,0]M][5,0] =
M(t,, t,]M[5cos(¢) + t;,5sin(p) + t,] from equation 1.
Thus the feature is given by

A[fJ(M) = m t]yvio JioZo ;zo Mltz, 1] (6)
M5 cos(@) + tz, 5sin(¢) + ty]dodt,dt,

This equation can be described by the two step strategy
where the local function is

" M[t s, t,]M[5 cos() + to, 5sin(¢) + t,)dddtedt, (7)
=0

Here the kernel operates at a neighbourhood of radius
5 pixels. We then sum all the local computations. This
process if explained in more detail in section ITI-B.

B. Monomial properties

The method described not only allows invariant features
which are invariant with respect to global image transfor-
mation, where a single angle and translation vector de-
scribe the transformation of the image, but also several
local transformations. This is viable if there is only mod-
erate overlap between the local transformation regions,
i.e. as long as the object separation in the scene is greater
than the kernel size of the monomials, [6].

This property is especially beneficial when we are con-
sidering images of the brain. Certain regions of the brain
are affected with the onset of AD, however the position of
these regions varies slightly between patients. Typically
one would register the images to determine the position
of these regions for analysis. By utilising the position in-
variance of this method one does not necessarily need to
register the images. The effect of each of these regions (ob-
jects) will impact on the calculated feature irrespective of
their position within the brain.

Furthermore, Schulz-Mirbach et al [6] have shown that
provided objects do not overlap, the invariant features are
approximately additive. This means that if we obtain fea-
tures for two given objects and then in a scene both are
present, the feature value here will be approximately the
sum of the independent feature values.

The effect of AD on each region of the brain varies. For
a given patient not all regions are affected. The additive
nature of the features will enable the features to have the
cumulative effects of all the regions that exhibit the effects
of AD.

I1I. EXPERIMENTATION
A. Data acquisition

FDG-PET images of patients suffering from AD and
normal controls were obtained from the Paul Scherrer In-
stitute (PSI), Villingen, Switzerland. The data were ac-
quired with a CTI Siemens ECAT 933/04-16 scanner, over
a period of 2 years. The scanning protocol remained the
same during the duration of this study to eliminate the
chance of any systematic errors being introduced. The
data supplied had been reconstructed using filtered back
projection and consisted of the first 16 frames of a dy-
namic scan, comprising of 7 image slices taken axially.
The slice separation was approximately 8mm resulting in
a total field of view of 56mm and each slice was 128 x 128
pixels.

The data comprised 73 normal controls and 48 patients
clinically diagnosed with AD using the criteria of the Na-
tional Institute of Neurological and Communicative Dis-
orders and Stroke and Alzheimer’s Disease and Related
Disorder Association (NINCDS- ADRDA) [1]. For this
study the dynamic nature of the data was not necessary
thus the 16 frames for each subject were summed to en-
force the signal.

The data was separated into two groups one for training
purposes and one to be used for testing. For the training
phase there were 37 normal controls and 24 AD and for
the testing phase there were 36 normal controls and 24
AD.

The background of the image influences the local calcu-
lations of f. It is claimed that if the background is homo-
geneous then the impact on the calculation is insignificant
[6]. In our image the background does not appear to be
homogeneous, therefore it becomes necessary to extract
the object from the background. Thus the images were
manually segmented from the noisy background. Once
this was done the invariant features were calculated.

B. Monomials

The following monomials, which were found to perform
well by Schael et al [3] were used for this study. Although
Schael et al used these for an industrial inspection task to
recognise defects in textures, they seem to perform well
in the task at hand compared to other arbitrarily chosen
monomials.

f1(M) = M][0,0]M[5, 0]
f2(M) = M([3,0]M[0, §]
f3(M) = M0, 0]M[5, 0]M]0, 10]

The monomials can be thought of as producing a lo-
cal window inside which all calculations are performed.
If we consider the f; monomial, this will produce a win-
dow of radius 5 pixels (see figure 2). In the window the
first monomial will select the central pixel, this will be
multiplied by a pixel at distance 5 pixels determined by
the second monomial. This is repeated for angles 0 — 27
and the results summed. This is essentially the local part
which will be repeated for all pixels to produce the feature.

In practice, to compute f; we consider a pixel and first
multiply it with all pixels at distance 5 from it. Then we



find the average value of these pairwise multiplications.
This is equivalent to integrating over all rotation angles.
This way we have a rotation invariant number assigned to
each pixel. Finally we average all these numbers to find a
single translation invariant number that characterises the
whole region.

indow

Image

Fig. 2. Monomial fi1- Action of a local kernel

In order to compute fo we consider a pixel, at distance
3 pixels from the centre of the window. This is multi-
plied with pixels a distance 8 pixels from the centre of the
window. The two pixels are 90 degrees to each other with
respect to the centre of the window. The average of this is
calculated for all pairwise multiplications to produce the
rotation invariant number (see figure 3). Then the average
of all these local windows is taken to produce a translation
invariant number, which characterises the whole region.
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Fig. 3. Monomial f2- Action of a local kernel; arrows indicate pixels
that are multiplied pairwise

The computation of f3 requires a much larger local win-
dow, namely one of 10 pixels. Here as in feature f; the
central pixel in the local window is multiplied by a pixel
at distance 5, which in turn is multiplied with a pixels a
distance 10 away. The pixel form the vertices of a right
angle triangle (see figure 4). The average of all these mul-
tiplications for all angles produces the rotation invariant
number. This is done for each pixel and averaged to pro-
duce the translation invariant number, which characterises
the whole region.

Applying these 3 monomials resulted in 21 (7 slices X
3) features in total per patient. These invariant features
were used to perform discriminant function analysis on the
training data and produce discriminant functions using
the package Statistica [8]. Individual features were tested
as well as combinations of many features to gain good

Fig. 4. Monomials f3- Action of a local kernel, arrows indicate
pixels that are multiplied together

classification accuracy. In order to test the accuracy the
discriminant function obtained from this training phase
was used to classify the test data.

IV. RESULTS AND DISCUSSION

Using all 21 features for classification yielded a classi-
fication accuracy of 97% during the training phase. The
classification accuracy reduced to 80% on the test data,
(see table I).

TABLE I
CLASSIFICATION ACCURACY USING ALL 21 INVARIANT FEATURES

a. Training

Predicted
True AD | Normal | correct
AD 24 0 100%
Normal | 2 35 95%
Total 97%
b. Testing
Predicted
True AD | Normal | correct
AD 17 7 1%
Normal | 4 33 89%
Total 80%

Although the training classification accuracy was ex-
tremely high, the resultant testing accuracy was not as
good. This can be explained by the fact that using so
many features resulted in over training thus the discrim-
inant function essentially described the training data too
well. However, the testing data being slightly different
were not classified so well.

The best 3 and the best 7 features were also used to clas-
sify the cases, (see tables IT and III). The best features
were selected by Statistica using a measure of F' to en-
ter. Here, the program selects for inclusion in the feature
set, the feature that makes the most significant additional
contribution to the discrimination between groups; that
is, the program chooses the variable with the largest F'
value. The F value for a variable indicates its statistical
significance in the discrimination between groups [8].

What we observe here is that reducing the number of
features used in the classification reduces the classification



TABLE II
CLASSIFICATION ACCURACY USING THE BEST 7 INVARIANT MONOMIAL

FEATURES, (f1(1), f3(1), f1(7), f2(1), f2(6), f1(3), f1(4)) (THE

NUMBER IN BRACKETS CORRESPONDS TO IMAGE SLICE NUMBER)

a. Training

Predicted
True AD | Normal | correct
AD 23 1 96%
Normal | 3 34 92%
Total 94%
b. Testing
Predicted
True AD | Normal | correct
AD 20 4 83%
Normal 7 30 81%
Total 82%
TABLE III

CLASSIFICATION ACCURACY USING THE BEST 3 INVARIANT MONOMIAL
FEATURES, (f1(1), f3(1), f1(7)) (THE NUMBER IN BRACKETS
CORRESPONDS TO IMAGE SLICE NUMBER)

a. Training

Predicted
True AD | Normal | correct
AD 21 3 8%
Normal | 3 34 92%
Total 90%
b. Testing
Predicted
True AD | Normal | correct
AD 21 3 8%
Normal | 5 32 86%
Total 87%

accuracy of the training data. This is desirable as we do
not really want to over-fit the data. As a result, the clas-
sification accuracy on the testing data, which is the most
important one, improves even only slightly. The classifica-
tion accuracy between training and testing is much more
similar when using fewer features. In addition, notice that
using many features biases the system towards a false neg-
ative thus reducing its sensitivity, which is very important
in a real diagnostic situation.

Further reduction in the number of features used does
not improve the performance but in fact deteriorates it.
This leads to the conclusion that using too many features
over-fits the data, so the predictive ability of the system
for new data is somewhat limited. On the other had using
too few features does not describe the classes adequately
hence its performance is low in training and testing. The
best performance appears to be when combining 3 fea-
tures. These features are the values of the monomials f;
and f3 computed for slices 1 and 7.

It is a well known fact that AD affects the hippo-campus
and cerebral cortex most vigorously [2]. The best 3 fea-

tures correspond to slices 1 and 7 which depict these parts
of the brain.

Although AD affects the brain globally, various regions
are more affected than others. The position of these re-
gions in the brain vary slightly between patients. A fully
global feature extraction method will not take into account
this. However, the local rotation and translation invari-
ance of the monomial method would, and this explains its
performance.
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